3.71 \(\int \frac{1}{(a+b x) (c+d x)^{3/2} \sqrt{e+f x} \sqrt{g+h x}} \, dx\)

Optimal. Leaf size=393 \[ \frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{\sqrt{c+d x} (b c-a d) (d e-c f) (d g-c h)}-\frac{2 d \sqrt{h} \sqrt{c+d x} \sqrt{e h-f g} \sqrt{\frac{f (g+h x)}{f g-e h}} E\left (\sin ^{-1}\left (\frac{\sqrt{h} \sqrt{e+f x}}{\sqrt{e h-f g}}\right )|-\frac{d (f g-e h)}{(d e-c f) h}\right )}{\sqrt{g+h x} (b c-a d) (d e-c f) (d g-c h) \sqrt{-\frac{f (c+d x)}{d e-c f}}}-\frac{2 b \sqrt{c f-d e} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{c f-d e}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{\sqrt{f} \sqrt{e+f x} \sqrt{g+h x} (b c-a d)^2} \]

[Out]

(2*d^2*Sqrt[e + f*x]*Sqrt[g + h*x])/((b*c - a*d)*(d*e - c*f)*(d*g - c*h)*Sqrt[c + d*x]) - (2*d*Sqrt[h]*Sqrt[-(
f*g) + e*h]*Sqrt[c + d*x]*Sqrt[(f*(g + h*x))/(f*g - e*h)]*EllipticE[ArcSin[(Sqrt[h]*Sqrt[e + f*x])/Sqrt[-(f*g)
 + e*h]], -((d*(f*g - e*h))/((d*e - c*f)*h))])/((b*c - a*d)*(d*e - c*f)*(d*g - c*h)*Sqrt[-((f*(c + d*x))/(d*e
- c*f))]*Sqrt[g + h*x]) - (2*b*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[(d*(g + h*x))/(d*g - c*
h)]*EllipticPi[-((b*(d*e - c*f))/((b*c - a*d)*f)), ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e -
 c*f)*h)/(f*(d*g - c*h))])/((b*c - a*d)^2*Sqrt[f]*Sqrt[e + f*x]*Sqrt[g + h*x])

________________________________________________________________________________________

Rubi [A]  time = 0.623636, antiderivative size = 393, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 8, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.229, Rules used = {179, 104, 21, 114, 113, 169, 538, 537} \[ \frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{\sqrt{c+d x} (b c-a d) (d e-c f) (d g-c h)}-\frac{2 d \sqrt{h} \sqrt{c+d x} \sqrt{e h-f g} \sqrt{\frac{f (g+h x)}{f g-e h}} E\left (\sin ^{-1}\left (\frac{\sqrt{h} \sqrt{e+f x}}{\sqrt{e h-f g}}\right )|-\frac{d (f g-e h)}{(d e-c f) h}\right )}{\sqrt{g+h x} (b c-a d) (d e-c f) (d g-c h) \sqrt{-\frac{f (c+d x)}{d e-c f}}}-\frac{2 b \sqrt{c f-d e} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{c f-d e}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{\sqrt{f} \sqrt{e+f x} \sqrt{g+h x} (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)*(c + d*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

(2*d^2*Sqrt[e + f*x]*Sqrt[g + h*x])/((b*c - a*d)*(d*e - c*f)*(d*g - c*h)*Sqrt[c + d*x]) - (2*d*Sqrt[h]*Sqrt[-(
f*g) + e*h]*Sqrt[c + d*x]*Sqrt[(f*(g + h*x))/(f*g - e*h)]*EllipticE[ArcSin[(Sqrt[h]*Sqrt[e + f*x])/Sqrt[-(f*g)
 + e*h]], -((d*(f*g - e*h))/((d*e - c*f)*h))])/((b*c - a*d)*(d*e - c*f)*(d*g - c*h)*Sqrt[-((f*(c + d*x))/(d*e
- c*f))]*Sqrt[g + h*x]) - (2*b*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[(d*(g + h*x))/(d*g - c*
h)]*EllipticPi[-((b*(d*e - c*f))/((b*c - a*d)*f)), ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e -
 c*f)*h)/(f*(d*g - c*h))])/((b*c - a*d)^2*Sqrt[f]*Sqrt[e + f*x]*Sqrt[g + h*x])

Rule 179

Int[(((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_))/(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])
, x_Symbol] :> Int[ExpandIntegrand[1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), (a + b*x)^m*(c + d*x)^(n + 1
/2), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IntegerQ[m] && IntegerQ[n + 1/2]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegersQ[2*m, 2*n, 2*p]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 114

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[e + f*
x]*Sqrt[(b*(c + d*x))/(b*c - a*d)])/(Sqrt[c + d*x]*Sqrt[(b*(e + f*x))/(b*e - a*f)]), Int[Sqrt[(b*e)/(b*e - a*f
) + (b*f*x)/(b*e - a*f)]/(Sqrt[a + b*x]*Sqrt[(b*c)/(b*c - a*d) + (b*d*x)/(b*c - a*d)]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) &&  !LtQ[-((b*c - a*d)/d), 0]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 169

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + (f*x^2)/d, x]]*Sqrt[Simp[(d
*g - c*h)/d + (h*x^2)/d, x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] &&  !SimplerQ[e
 + f*x, c + d*x] &&  !SimplerQ[g + h*x, c + d*x]

Rule 538

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d*x^2)/c]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d*x^2)/c]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{1}{(a+b x) (c+d x)^{3/2} \sqrt{e+f x} \sqrt{g+h x}} \, dx &=\int \left (-\frac{d}{(b c-a d) (c+d x)^{3/2} \sqrt{e+f x} \sqrt{g+h x}}+\frac{b}{(b c-a d) (a+b x) \sqrt{c+d x} \sqrt{e+f x} \sqrt{g+h x}}\right ) \, dx\\ &=\frac{b \int \frac{1}{(a+b x) \sqrt{c+d x} \sqrt{e+f x} \sqrt{g+h x}} \, dx}{b c-a d}-\frac{d \int \frac{1}{(c+d x)^{3/2} \sqrt{e+f x} \sqrt{g+h x}} \, dx}{b c-a d}\\ &=\frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{(b c-a d) (d e-c f) (d g-c h) \sqrt{c+d x}}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{e-\frac{c f}{d}+\frac{f x^2}{d}} \sqrt{g-\frac{c h}{d}+\frac{h x^2}{d}}} \, dx,x,\sqrt{c+d x}\right )}{b c-a d}+\frac{(2 d) \int \frac{-\frac{1}{2} c f h-\frac{1}{2} d f h x}{\sqrt{c+d x} \sqrt{e+f x} \sqrt{g+h x}} \, dx}{(b c-a d) (d e-c f) (d g-c h)}\\ &=\frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{(b c-a d) (d e-c f) (d g-c h) \sqrt{c+d x}}-\frac{(d f h) \int \frac{\sqrt{c+d x}}{\sqrt{e+f x} \sqrt{g+h x}} \, dx}{(b c-a d) (d e-c f) (d g-c h)}-\frac{\left (2 b \sqrt{\frac{d (e+f x)}{d e-c f}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{1+\frac{f x^2}{d \left (e-\frac{c f}{d}\right )}} \sqrt{g-\frac{c h}{d}+\frac{h x^2}{d}}} \, dx,x,\sqrt{c+d x}\right )}{(b c-a d) \sqrt{e+f x}}\\ &=\frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{(b c-a d) (d e-c f) (d g-c h) \sqrt{c+d x}}-\frac{\left (2 b \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (b c-a d-b x^2\right ) \sqrt{1+\frac{f x^2}{d \left (e-\frac{c f}{d}\right )}} \sqrt{1+\frac{h x^2}{d \left (g-\frac{c h}{d}\right )}}} \, dx,x,\sqrt{c+d x}\right )}{(b c-a d) \sqrt{e+f x} \sqrt{g+h x}}-\frac{\left (d f h \sqrt{c+d x} \sqrt{\frac{f (g+h x)}{f g-e h}}\right ) \int \frac{\sqrt{\frac{c f}{-d e+c f}+\frac{d f x}{-d e+c f}}}{\sqrt{e+f x} \sqrt{\frac{f g}{f g-e h}+\frac{f h x}{f g-e h}}} \, dx}{(b c-a d) (d e-c f) (d g-c h) \sqrt{\frac{f (c+d x)}{-d e+c f}} \sqrt{g+h x}}\\ &=\frac{2 d^2 \sqrt{e+f x} \sqrt{g+h x}}{(b c-a d) (d e-c f) (d g-c h) \sqrt{c+d x}}-\frac{2 d \sqrt{h} \sqrt{-f g+e h} \sqrt{c+d x} \sqrt{\frac{f (g+h x)}{f g-e h}} E\left (\sin ^{-1}\left (\frac{\sqrt{h} \sqrt{e+f x}}{\sqrt{-f g+e h}}\right )|-\frac{d (f g-e h)}{(d e-c f) h}\right )}{(b c-a d) (d e-c f) (d g-c h) \sqrt{-\frac{f (c+d x)}{d e-c f}} \sqrt{g+h x}}-\frac{2 b \sqrt{-d e+c f} \sqrt{\frac{d (e+f x)}{d e-c f}} \sqrt{\frac{d (g+h x)}{d g-c h}} \Pi \left (-\frac{b (d e-c f)}{(b c-a d) f};\sin ^{-1}\left (\frac{\sqrt{f} \sqrt{c+d x}}{\sqrt{-d e+c f}}\right )|\frac{(d e-c f) h}{f (d g-c h)}\right )}{(b c-a d)^2 \sqrt{f} \sqrt{e+f x} \sqrt{g+h x}}\\ \end{align*}

Mathematica [C]  time = 4.38364, size = 321, normalized size = 0.82 \[ \frac{2 i (c+d x) \sqrt{\frac{d (e+f x)}{f (c+d x)}} \sqrt{\frac{d (g+h x)}{h (c+d x)}} \left ((a d f-2 b c f+b d e) \text{EllipticF}\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{d g}{h}-c}}{\sqrt{c+d x}}\right ),\frac{d e h-c f h}{d f g-c f h}\right )+f (b c-a d) E\left (i \sinh ^{-1}\left (\frac{\sqrt{\frac{d g}{h}-c}}{\sqrt{c+d x}}\right )|\frac{d e h-c f h}{d f g-c f h}\right )+b (c f-d e) \Pi \left (\frac{(b c-a d) h}{b (c h-d g)};i \sinh ^{-1}\left (\frac{\sqrt{\frac{d g}{h}-c}}{\sqrt{c+d x}}\right )|\frac{d e h-c f h}{d f g-c f h}\right )\right )}{\sqrt{e+f x} \sqrt{g+h x} (b c-a d)^2 (c f-d e) \sqrt{\frac{d g}{h}-c}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)*(c + d*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]),x]

[Out]

((2*I)*(c + d*x)*Sqrt[(d*(e + f*x))/(f*(c + d*x))]*Sqrt[(d*(g + h*x))/(h*(c + d*x))]*((b*c - a*d)*f*EllipticE[
I*ArcSinh[Sqrt[-c + (d*g)/h]/Sqrt[c + d*x]], (d*e*h - c*f*h)/(d*f*g - c*f*h)] + (b*d*e - 2*b*c*f + a*d*f)*Elli
pticF[I*ArcSinh[Sqrt[-c + (d*g)/h]/Sqrt[c + d*x]], (d*e*h - c*f*h)/(d*f*g - c*f*h)] + b*(-(d*e) + c*f)*Ellipti
cPi[((b*c - a*d)*h)/(b*(-(d*g) + c*h)), I*ArcSinh[Sqrt[-c + (d*g)/h]/Sqrt[c + d*x]], (d*e*h - c*f*h)/(d*f*g -
c*f*h)]))/((b*c - a*d)^2*(-(d*e) + c*f)*Sqrt[-c + (d*g)/h]*Sqrt[e + f*x]*Sqrt[g + h*x])

________________________________________________________________________________________

Maple [B]  time = 0.08, size = 2842, normalized size = 7.2 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)/(d*x+c)^(3/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x)

[Out]

2*(d*x+c)^(1/2)*(f*x+e)^(1/2)*(h*x+g)^(1/2)*(-EllipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^
(1/2))*a*c*d^2*e*f*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+Ell
ipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^2*d*e*f*h*((d*x+c)*f/(c*f-d*e))^(1/2)*
(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-EllipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f
/(c*h-d*g))^(1/2))*b*c*d^2*e*f*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e
))^(1/2)+EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*a*c*d^2*e*f*h*((d*x+c)*f/(c*f-
d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((
c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^2*d*e*f*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e
)*d/(c*f-d*e))^(1/2)+EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c*d^2*e*f*g*((d*
x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+2*EllipticPi(((d*x+c)*f/(c*f
-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^2*d*e*f*h*((d*x+c)*f/(c*f-d*e))^(1/
2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-2*EllipticPi(((d*x+c)*f/(c*f-d*e))^(1/2),-(c*f-d*
e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c*d^2*e*f*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d
*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+x*b*c*d^2*f^2*g+EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(
c*h-d*g))^(1/2))*b*c^3*f^2*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(
1/2)-EllipticPi(((d*x+c)*f/(c*f-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^3*f^
2*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+EllipticPi(((d*x+c)*
f/(c*f-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*d^3*e^2*g*((d*x+c)*f/(c*f-d*e))
^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-x^2*a*d^3*f^2*h-a*d^3*e*f*g+x*b*c*d^2*e*f*h+b
*c*d^2*e*f*g-EllipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^3*f^2*h*((d*x+c)*f/(c*
f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-x*a*d^3*e*f*h+x^2*b*c*d^2*f^2*h-x*a*d^
3*f^2*g-EllipticPi(((d*x+c)*f/(c*f-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c*d
^2*e^2*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+EllipticF(((d*x
+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*a*c^2*d*f^2*h*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/
(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-EllipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^
(1/2))*a*c*d^2*f^2*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+Ell
ipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*a*d^3*e*f*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-
(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+EllipticF(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(
c*h-d*g))^(1/2))*b*c^2*d*f^2*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))
^(1/2)-EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*a*c^2*d*f^2*h*((d*x+c)*f/(c*f-d*
e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)+EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*
f-d*e)*h/f/(c*h-d*g))^(1/2))*a*c*d^2*f^2*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*
d/(c*f-d*e))^(1/2)-EllipticE(((d*x+c)*f/(c*f-d*e))^(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*a*d^3*e*f*g*((d*x+c)
*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^(1/2)-EllipticE(((d*x+c)*f/(c*f-d*e))^
(1/2),((c*f-d*e)*h/f/(c*h-d*g))^(1/2))*b*c^2*d*f^2*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*
(-(f*x+e)*d/(c*f-d*e))^(1/2)+EllipticPi(((d*x+c)*f/(c*f-d*e))^(1/2),-(c*f-d*e)*b/f/(a*d-b*c),((c*f-d*e)*h/f/(c
*h-d*g))^(1/2))*b*c^2*d*f^2*g*((d*x+c)*f/(c*f-d*e))^(1/2)*(-(h*x+g)*d/(c*h-d*g))^(1/2)*(-(f*x+e)*d/(c*f-d*e))^
(1/2))/f/(a*d-b*c)^2/(c*h-d*g)/(c*f-d*e)/(d*f*h*x^3+c*f*h*x^2+d*e*h*x^2+d*f*g*x^2+c*e*h*x+c*f*g*x+d*e*g*x+c*e*
g)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )}{\left (d x + c\right )}^{\frac{3}{2}} \sqrt{f x + e} \sqrt{h x + g}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(3/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x + a)*(d*x + c)^(3/2)*sqrt(f*x + e)*sqrt(h*x + g)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(3/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b x\right ) \left (c + d x\right )^{\frac{3}{2}} \sqrt{e + f x} \sqrt{g + h x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)**(3/2)/(f*x+e)**(1/2)/(h*x+g)**(1/2),x)

[Out]

Integral(1/((a + b*x)*(c + d*x)**(3/2)*sqrt(e + f*x)*sqrt(g + h*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x + a\right )}{\left (d x + c\right )}^{\frac{3}{2}} \sqrt{f x + e} \sqrt{h x + g}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(3/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*x + a)*(d*x + c)^(3/2)*sqrt(f*x + e)*sqrt(h*x + g)), x)